
Journal of Real-Time Image Processing manuscript No.
(will be inserted by the editor)

Live User-Guided Depth Map Estimation for Single Images

Márcio C. F. Macedo · Antônio L. Apolinário Jr.

Received: date / Accepted: date

Abstract The availability of depth information in an

image enables the simulation of distinct visual effects

(e.g., refocus, desaturation, haze) that are related to the

distance of the camera to the objects in the scene. To

generate depth from color data in single images, exist-

ing techniques typically use learning-based strategies or

require user-guided depth annotations. Learning-based

techniques suffer from generality issues, while user-guided

techniques solve a costly optimization problem that pre-

vents a real-time feedback of the depth map generated

from the user annotation. In this paper, we overcome

the latter problem and propose a GPU-based algorithm

that provides live feedback on the output depth map es-

timated during the user annotation. We follow previous

work and treat the depth map estimation as a 2D Pois-

son problem that can be optimized using a sparse linear
solver. However, we change the way that the sparse lin-

ear coefficients are computed to favor a more smooth,

spatially coherent depth map, able to provide the de-

sired visual effects. Moreover, our approach is designed

to run almost entirely on the GPU, achieving real-time

performance even for high-resolution images.

Keywords Depth Map · Poisson Equation · Parallel

Processing · Real Time

1 Introduction

The increasing popularity of virtual and augmented re-

ality devices (e.g., Facebook Oculus, Microsoft HoloLens)

M. Macedo
E-mail: marciocfmacedo@gmail.com

A. Apolinário
E-mail: antonio.apolinario@ufba.br

Federal University of Bahia, Bahia, Brazil

that provide 3D visualization experiences shows that

users are interested in applications that augment their

perceived depth with respect to a 2D content. Even so,

an image is still a 2D matrix that stores color data per

pixel, and most of the 2D content available today con-

sists of photographs taken by users and that do not

store depth data.

Visual effects achieved using split-depth images [21]

and wiggle stereoscopy [28] use motion to improve depth

perception in video sequences, but require depth data

or at least a pair of left/right images to provide the de-

sired visual effect. The Ken Burns effect requires only a

combination of zooming and panning effects to improve

depth perception for single images, although the exis-

tence of depth information eases its design [27]. There-

fore, the availability of depth data is important to aug-

ment depth perception for 2D applications.

Single image editing is a challenging task that has

been an active topic of research in the literature, with

solutions to assist the user in tasks such as image col-

orization [44] and image synthesis [42]. Depth-based im-

age editing allows the generation of visual effects (e.g.,

refocus, desaturation, haze) that augment the depth

perception and work on the basis of depth data. How-

ever, the problem of recovering depth from the color

data of a single image is ill-posed. One strategy to make

this problem tractable relies on user-guided depth an-

notation to assist in the depth estimation. Even though

semi-automatic techniques provide visually plausible re-

sults, they require user intervention and typically do

not work in real time. Hence, the user must first an-

notate the image with depth scribbles and wait a few

seconds before the algorithm provides the output depth

map (top of Figure 1). Any corrections to be done in

the annotation will require the user to wait another few

seconds before the display of the final result.

2 Márcio C. F. Macedo, Antônio L. Apolinário Jr.

Time (seconds)

Time (milliseconds)

T
ra

d
it

io
n

a
l

In
te

ra
ct

io
n

P
ro

p
o
se

d
In

te
ra

ct
io

n

Fig. 1 An illustrated view of user interaction models for depth map annotation. Red arrows indicate the time spent by the
algorithm to estimate a depth map. Blue arrows indicate the time spent by the user to annotate an image. (Top) User-guided
depth map estimation methods typically expect the user to first annotate the input image, and then solve a costly optimization
problem to generate a dense depth map. Small corrections in the annotation require the user to wait a few seconds to see the
final result. (Bottom) In our work, we give live previews of the depth map for each user annotation, allowing the user to add
less scribbles and/or spend less time to generate the idealized depth map. Top depth maps were generated using the method
of Liao et al. [22]. Bottom depth maps were generated using our method. Image: Claude Monet’s ”Woman with a Parasol”.

In this work, we propose an algorithm for live user-

guided depth map estimation for single images. Depth

map estimation is treated as a 2D Poisson problem

[22], where user depth scribbles are constraints of a

sparse linear system, optimized to generate an edge-

aware depth map. By designing an energy function to

favor the generation of smooth, spatially coherent depth

maps, and by implementing an efficient hierarchical sparse

iterative solver to minimize such an energy function on

the Graphics Processing Unit (GPU), we are able to

generate visually pleasant depth maps in real time, en-

abling the user to see the live result of his/her depth

annotations, as illustrated at the bottom of Figure 1.

The main contribution of this work is an inter-

active user-guided depth map estimation process that

uses an efficient GPU implementation to produce smooth

depth maps one order of magnitude faster than related

work, allowing a user to annotate and interactively re-

fine a depth map on the basis of the live feedback given

by the application (the bottom of Figure 1 shows an

illustrative example of this contribution).

2 Related Work

Given the considerable amount of work already pro-

posed in the field of depth map estimation, several strate-

gies can be employed to estimate real-world depth data.

The most accurate and expensive strategy for depth

map estimation relies on the usage of specialized hard-

ware setup to capture the depth data. Depth sensors

based on stereo vision [12,1], structured light [8] or

time-of-flight [19] technologies are able to capture and

provide high-quality depth data even at real-time frame

rates, but cannot recover depth from legacy content

taken by the user with a commodity camera.

If the legacy content taken by the user is a video,

Structure from Motion (SfM), Simultaneous Localiza-

tion and Mapping (SLAM) and Visual Odometry (VO)

techniques [9,38,35] coupled with a depth propagation

approach [14,39,26] are able to take into consideration

the spatial coherency and relative motion between con-

secutive color frames to estimate temporally coherent

depth maps. However, these methods require at least a

small motion between frames to work properly.

If the legacy content taken by the user is a single im-

age, like a photograph, deep learning [20] is commonly

used to estimate a depth map from a single image [17].

Since the work of Saxena et al. [36], a large training

dataset containing color and depth data is used to train

a deep neural network able to estimate the depth of any

single image [24]. Inspired by the fields of Shape from

Shading (SfS) [15] and Depth from Defocus (DfD) [31],

depth cues such as shading [3] and defocus [11] are typ-

ically used to aid such a learning process. Thus, deep

learning techniques are automatic and provide accurate

results when tested on images that are similar (e.g.,

taken in the same environment, with the same visibility

conditions) to the ones present in the training dataset,

but fail to generalize for complex, unseen scenes.

As an alternative to learning-based strategies, ap-

proaches based on user guidance have been proposed

Live User-Guided Depth Map Estimation for Single Images 3

(a) Original Image

(b) Gray Image Pyramid

(c) Annotated Image Pyramid

(d) Depth Image Pyramid

(e) Depth-based Effects

Fig. 2 An overview of the proposed solution. Given an input image (a), we convert it to grayscale (b) and allow the user to
annotate the input image with sparse depth scribbles (c). Depth scribbles and gray intensities are used to provide an edge-aware
depth map estimation (d). Image pyramids (b, c, d) are built to accelerate depth propagation between neighbour pixels in a
multi-scale, bottom-up fashion. Hence, depth-based effects, such as desaturation (top of (e)), haze (middle of (e)) and refocus
(bottom of (e)), can be rendered based on the generated depth map. Image (a) is courtesy of Pxfuel.

to allow semi-automatic depth estimation from a single

image. In general, these approaches operate directly on

the image domain, allowing the user to paint the color

image with sparse depth scribbles that are propagated

in an edge-aware manner to generate a dense depth

map. Such a map is later used to generate stereographic

content or depth-based effects, such as haze.

Some approaches formulate the depth propagation

as a graph-based optimization problem, where the color

image is considered as a 4-connected graph, with nodes

representing pixels, valued-edges representing the sim-

ilarity between neighbour pixels, and user depth scrib-

bles being the constraints of the problem. Some works

[32,43] take inspiration by image segmentation methods

to propagate depth in the graph. Lopez et al. [25] assign

edge weights inversely proportional to image gradients,

favoring depth propagation at regions with similar color

intensities, and reducing depth propagation at the bor-

der regions.

Gerrits et al. [10] use depth and normal constraints

to guide the depth propagation. Liao et al. [22] treat the

depth propagation problem as an anisotropic Poisson

diffusion, and propose several tools (e.g., relative depth,

directional guidance) to aid the depth editing. Wang et

al. [41] propagate depth using a colorization by opti-

mization approach, weighted on the basis of a distance

transform of the user depth scribbles and an edge-aware

smoothness term. Lin et al. [23] adapt the bilateral fil-

ter to provide a progressive depth map estimation in a

single image. Iizuka et al. [16] use superpixel-based seg-

mentation and geodesic distance computation to prop-

agate depth in the entire image.

One problem of the semi-automatic works mentioned

above is that they were not designed to provide real-

time performance for the depth map estimation, pre-

venting the user to promptly see whether the idealized

depth map matches the depth map estimated (top of

Figure 1). With a live feedback of the estimated depth

map, the user could use less scribbles to achieve the

desired effect with a reduced time, as illustrated at the

bottom of Figure 1, and the sparse-to-dense propaga-

tion method could be adapted for real-time applica-

tions, such as monocular augmented reality [14].

We take advantage of the high processing power of a

GPU to propose an approach for live user-guided depth

map estimation. Inspired by related work [22], we treat

the depth map estimation as an anisotropic 2D Pois-

son problem, and propose an algorithm to solve that

problem efficiently on the GPU, almost one order of

magnitude faster than the fastest previous work, while

generating visually pleasing results.

4 Márcio C. F. Macedo, Antônio L. Apolinário Jr.

(a) (b) (c) (d)

(a) (b) (c) (d)(a) (b) (c) (d)(a) (b) (c) (d)(a) (b) (c) (d)

(a) (b) (c) (d)(a) (b) (c) (d)(a) (b) (c) (d)(a) (b) (c) (d)

Fig. 3 A depth annotated image (a), and the corresponding depth maps generated by solving Equation (3) with ω = 1 (b), ω
estimated from (4) (c), and ω estimated from (5) (d). Depth maps were generated by a sparse iterative solver with the same
number of iterations. Image (a) by Pete Linforth from Pixabay.

(a) Original Image I (b) Gray Image G (c) Depth Image D (d) Edge Detection on G (e) Edge Detection on D

Fig. 4 Given an input image I (a) and its corresponding grayscale version G (b), traditional edge detection algorithms (e.g.,
Canny in (d)) are not robust enough to detect only the outer edges that separate the distinct parts of the object in the scene
(d). By applying an edge detection algorithm over a depth map D (c) estimated from I, the task of outer edge detection
becomes easier (e).

3 User-Guided Depth Annotation

An overview of our proposal is shown in Figure 2. Our

algorithm starts with a single, colored image, like the

one shown in Figure 2-(a). To generate depth from

color data (Figure 2-(d)), we make use of a grayscale

representation of the original image (Figure 2-(b)), to

provide edge-aware depth map estimation, and sparse

depth scribbles annotated on top of the original image

(Figure 2-(c)), to guide the depth propagation. Image

pyramids (Figures 2-(b, c, d)) are used to speed up the

convergence of a sparse iterative solver and provide real-

time performance. Distinct depth-based effects, such as

desaturation (top of Figure 2-(e)), haze (middle of Fig-

ure 2-(e)) and refocus (bottom of Figure 2-(e)) may be

rendered on the basis of the visually plausible depth

map generated by our algorithm.

Let us denote I as a colored image with m rows

and n columns, where each pixel I(i, j) = [Ir(i, j),
Ig(i, j), Ib(i, j)]

T , with i ∈ [1, n] and j ∈ [1,m], stores

red, green and blue color channels, respectively (Figure

2-(a)). Our main goal is to estimate a single-channel

depth map D (Figure 2-(d)) from I, where each pixel

D(i, j) ∈ [0, dmax] stores a distance value of its corre-

sponding part of the scene to the camera.

The problem of estimating D from I without prior

knowledge of the scene is ill-posed, since the depth data

of the 3D scene are lost when projected onto pixels in

a 2D image plane. To perform the inverse projection

and recover the 3D data given a 2D image, one would

need to know the depth of each pixel in advance. To

make this problem tractable, we allow the user to define

the content of a discrete depth scribble image S, that

stores, for each annotated pixel S(i, j) ∈ [0, dmax], a

user-defined depth intensity. By default, non-annotated

pixels in S can be assigned to any value ∈ [0, dmax],

since one can use an additional binary image to separate

annotated from non-annotated pixels. D is estimated by

the propagation of the depth intensities in S over I. An

example of visualization of annotated pixels of S shown

on top of I can be seen in Figure 2-(c).

The most common strategy to estimate depth from

color data using a set of sparse depth scribbles is by

solving a 2D Poisson problem [29,4,22,14]. In this work,

we follow that same approach and mathematically de-

fine the depth intensity propagation on the basis of a

2D Laplace equation, in the form of ∆D = 0, with ∆

Live User-Guided Depth Map Estimation for Single Images 5

as the Laplace operator, whose discretization is∑
(k,l)∈N(i,j)

D(i, j)− D(k, l) = 0, (1)

whereN(i, j) stores the indices of the 4-connected neigh-

bourhood of the pixel D(i, j), and the depth scribbles

S are hard constraints in this formulation, such that

D(i, j) = S(i, j) for every pixel S(i, j) that was directly

annotated by the user. Our algorithm is designed to al-

low the user to progressively annotate the depth map.

Hence, we initialize D(i, j) = dmax for non-annotated

pixels, since we assume by default that D(i, j) = 0 is

used for foreground pixels that are close to the camera,

and D(i, j) = dmax is used for background pixels that

are far from the camera. During the user annotation,

the values of D(i, j) for non-annotated pixels are the

ones output by the optimization solver.

The solution of (1) favors a smooth propagation of S
along the entire image (Figure 3-(b)), since each neigh-

bour contributes equally to the depth value assigned

to a pixel. However, we need to add an edge-aware co-

efficient in (1) to limit the depth propagation to the

boundary of the objects in I. To do so, we convert I to

a single-channel grayscale image G (Figure 2-(b))

G(i, j) = 0.299Ir(i, j) + 0.587Ig(i, j) + 0.114Ib(i, j) (2)

and formulate the edge-aware depth propagation [22]∑
(k,l)∈N(i,j)

ω(i, j, k, l)(D(i, j)− D(k, l)) = 0, (3)

where ω(i, j, k, l) ∈ [0, 1], or simply ω, is a coefficient

that measures the difference of gray intensities between

neighbour pixels G(i, j) and G(k, l)

ω = exp(−β|G(i, j)− G(k, l)|), (4)

and β is a user-defined parameter to control the influ-

ence of the difference between gray intensities in the

depth propagation.

According to (4), ω is close to 0 for neighbour pixels

located at the object’s boundaries (i.e., where neigh-

bour gray intensities are too different from each other),

and is 1 for neighbour pixels with the same gray inten-

sity (i.e., G(i, j) = G(k, l)).

By solving (3), we are able to greatly improve the

visual quality of D, as shown in Figure 3-(c). However,

performance and visual quality issues still remain when

using such an approach to estimate depth from color

data.

Equation (3) can be solved through the construction

of a constrained sparse linear system. As discussed in

Section 5.2, even for a low-resolution (e.g., 480p) image,

the majority of the available sparse iterative solvers do

not achieve convergence in real time, hampering the use

of this approach for interactive depth map estimation.

To reduce such a problem, we take inspiration from

multigrid acceleration techniques [6,34] to solve (3) hi-

erarchically on the basis of image pyramids.

Let us assume that G(p) (Figure 2-(b)), S(p) (Figure

2-(c)) and D(p) (Figure 2-(d)) are gray, user-annotated

and depth images that, at the level p ∈ [0, α] of the

pyramid, have m
2p rows and n

2p columns. Then, we first

solve (3) in the coarsest level of the pyramid (p = α)

and iteratively use the data computed in a coarser level

p of the pyramid as an initial guess to solve (3) for

the next finer level p− 1 of the pyramid. This strategy

accelerates the convergence of an iterative solver, but

is insufficient to provide real-time performance when

running on the CPU. In Section 4, we describe our ef-

ficient GPU implementation that brings real-time per-

formance for the depth propagation.

The second problem of Equation (3) is related to

visual quality. Leaking artifacts may occur if the gray

intensity of distinct parts of the scene are not too differ-

ent from each other, or noise artifacts may appear if an

object is mostly composed of distinct gray intensities, as

shown in the closeups of Figure 3-(c). To minimize such

a problem, we make use of an edge detection algorithm

that detects only the outer edges that separate the ob-

jects present in the scene, maximizing the depth prop-

agation inside an object, while minimizing the depth

propagation between distinct parts of the scene.

Holynski and Kopf [14] have already noted that the

traditional edge detection algorithms (e.g., Canny [7])

are not able to detect accurately the outer edges of

an object in G (Figure 4-(d)). To solve that problem,

they take advantage of the motion between consecutive

frames to extract the outer edges. However, their ap-

proach cannot be applied to single images, since there

is no motion or multiple frames available.

Taking advantage of the multi-scale representation

illustrated in Figure 2, used to speed up the convergence

of a sparse iterative solver, one can see that even in

the coarsest level of the pyramid, where G(α) is mostly

composed of the low-frequency details of G(0), the depth

map D(α) computed by solving (3) already provides a

clear separation between the distinct regions of interest,

according to the depths annotated in S. In this case, the

boundaries that separate the regions of interest can be

easily detected by edge detection algorithms in D, as

shown in Figure 4-(e). So, rather than relying solely on

the difference between gray intensities when computing

ω, we change (4), such that

ω
(p)

=

{
exp(−β|G(p)(i, j)− G(p)(k, l)|) if |D(p)(i, j)− D(p)(k, l)| > γ

1 otherwise,

(5)

6 Márcio C. F. Macedo, Antônio L. Apolinário Jr.

Algorithm 1 Live user-guided depth map estimation

1: //preprocessing
2: I ← loadInputImage;
3: α ← estimateMaximumPyramidLevel(I);
4: W ← precomputeWeightTable(β);
5: G(0) ← convertColorToGrayscale(I);
6: G ← buildPyramid(G);
7: D(α) ← initializeDepthMap(dmax);
8:
9: //live depth map estimation

10: for each frame do
11: if user has provided a new annotation then
12: S(0) ← updateAnnotatedImage;
13: S ← buildPyramid(S);
14: D(α) ← updateDepthMap(S(α));
15: end if
16: if solver convergence has not been achieved then
17: for p from α to 1 do
18: D(p) ← runSolver(D(p), G(p), S(p), W, p, α);
19: D(p−1) ← upsample(D(p));
20: end for
21: D(0) ← runSolver(D(0), G(0), S(0), W, p, α);
22: end if
23: end for

where D(p) is an upsampled version of a D(p+1) pre-

viously estimated, p goes from α − 1 to 0, since at the

coarsest level α, the first D(α) must be computed using

(4), and γ is a depth threshold

γ =

{
4 if 0 < p < α

0 else if p = 0
(6)

A discussion about the values chosen for γ can be seen

in Section 5.5.

In this updated definition of ω, pixels propagate

their depths uniformly on the interior side of an object,

similar to the effect achieved when using (1), and the

propagation intensity decreases as long as a pixel be-

comes closer to the boundary of an object. The usage of

both G and D images during the solution of the discrete

Poisson problem favors spatial coherency and minimize

the presence of artifacts during the depth propagation,

as depicted in Figure 3-(d).

4 GPU-Based Live Depth Annotation

In this section, we describe our GPU implementation

to achieve real-time performance for the user-guided

depth map estimation method presented in Section 3.

The proposed process is shown in Algorithm 1. By de-

fault, GPU images are stored in pitched memory to fa-

vor coalesced memory access on the GPU. Also, our im-

age processing kernels associate each thread launched

by the application with its corresponding pixel in an

image.

In our algorithm, the CPU is mostly used to run

part of the preprocessing stage (Lines 2-7), to control

the main loop of the application (Lines 10-23), and to

call the GPU kernels for parallel processing. In the pre-

processing stage, we load the input image I (Figure 2-

(a), Line 2) on the CPU and estimate the maximum

pyramid level α = log(min(m,n)
45 + 1) (Line 3), for an in-

put image with m rows and n columns. Assuming that

every pixel G(i, j) ∈ [0, 255], we know that the integer

absolute difference of gray intensities |G(i, j) − G(k, l)|
lies in the integer interval [0, 255]. Given that β is known

a priori, we can precompute an array W, on the CPU

(Line 4), with the possible values that ω (5) may as-

sume. Hence, W(x) = exp(−xβ), 0 ≤ x ≤ 255. W is

loaded as a constant read-only memory on the GPU,

to avoid the cost of an intensive evaluation of the ex-

ponential function on the GPU solver kernel (Lines 18

and 21). Afterwards, I is copied from CPU to GPU and

a GPU kernel is launched to perform the grayscale con-

version (2) of I to G(0) (Line 5). Then, the Gaussian

pyramid of G is built on the GPU (Line 6, Figure 2-

(b)). Finally, a kernel initializes the coarsest depth map

D(α) with a default value of dmax (Line 7).

In the main loop (Line 10), for each frame, we check

the validity of two conditions: whether a new depth an-

notation has been provided by the user (Line 11) and

whether the depth propagation has achieved conver-

gence (Line 16). If the first condition is valid, a GPU

kernel paints S with user-defined sparse depth scrib-

bles (Line 12). Then, an image pyramid of S is built

as a set of mipmaps that stores, per pixel, maximum

rather than average values around corresponding 2× 2

neighbours of the previous level on the GPU (Line 13,

Figure 2-(c)). Annotated pixels at the coarsest level of

S are used to initialize or update D(α) with the con-

straints of the solver (Line 14, Figure 2-(d)). Next, we

proceed with the depth propagation. If that process has

not achieved convergence, we densify D(α) by solving

(3) on the GPU (Lines 18 and 21), and initialize non-

annotated pixels in D(p−1) as an upsampled version of

the non-annotated pixels in D(p) (Line 19, Figure 2-

(d)), in order to make sure that the previously com-

puted depth map is used to accelerate the convergence

of the solver in a finer pyramid level. Solver convergence

is achieved when the residual error is below a tolerance

tol. However, to keep the real-time performance during

the depth propagation, we limit the number of solver

iterations per pyramid level to it. Hence, even if an

accurate depth map cannot be estimated in a single

frame, we provide the feedback on D to the user and

promote its progressive refinement in the next frames,

until convergence measured by tol has been achieved.

Live User-Guided Depth Map Estimation for Single Images 7

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255 255 64 64 255 255

255 255 64 64 255 255

255 255 255 255 255 255

thread at pixel (i, j)

(a) Depth Map D(α)

255 128 128 255 255 255 255 255

255 128 128 255 192 64 128 255

255 128 128 255 128 156 200 255

255 255 255 255 192 200 180 255

255 255 255 255 255 255 255 255

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

64 48 32

48

48

64

64

(b) Gray Image G(α)

255 255 64

255

255

depth values

64 48 32

48

48

gray values

... 0 0 16 0 ...

x y z w

(c) Absolute Differences AD(α)

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

? ? ? ? ? ?

? ? 64 64 ? ?

? 254.8 64 64 ? ?

? ? ? ? ? ?

(d) Updated Depth Map D(α)

Fig. 5 An overview of a single iteration of our parallel solver for the coarsest level α of the image pyramid with resolution
16× 16. Given an annotated depth map (a) and a grayscale image (b), we divide both images into CUDA blocks (inside the
colored contours) of size B × B (in this example, B = 4 for visualization purpose) and load each block into the shared memory.
Then, each GPU thread stores integer absolute differences (blue arrows in (c)) between its pixel (i, j) (strong orange squares)
and its neighbour grayscale values (weak orange squares in (b)) in an int4 type global memory array AD(α) (see the x, y, z,
and w variables in (c)), whenever the depth difference between neighbours is above a depth threshold (assume here γ = 0,
(6)), as required in (5). Afterwards, each thread associated with a non-annotated pixel (pixels labeled with ’?’ in (d)) accesses
neighbour depth values (weak orange squares in (a)) and corresponding ω values (5), computed on the basis of AD(α) and the
precomputed weight table W (i.e., ω(α) = W(AD(α)(i, j))) to minimize (3) and update the depth map (d) until convergence
or a maximum number of iterations has been achieved.

Both tol and it are user-defined values, and the ones

that we have used in this work are shown in Table 1.

The depth propagation is provided by our parallel

hierarchical sparse iterative solver, whose overview is

illustrated in Figure 5. To minimize (3) iteratively, we

need to compute the weight coefficients ω(p) (5) per

pyramid level p, to separate distinct regions of the im-

age. These weights are estimated on the basis of gray

and depth intensities. Knowing that the gray image re-

mains unchanged during the depth propagation, we can

avoid the computation of the absolute differences in (5)

for every iteration of the solver kernel. Hence, a GPU

kernel is launched once per pyramid level p, to store in

an int4 type global memory array AD(p), the integer

absolute differences of gray intensities between a pixel

and its 4-connected neighbourhood whenever the depth

difference between neighbours is above γ (6), otherwise,

0 is stored, since ω = exp(0) = 1 (5). To do so, we di-

vide the image domain of both D(p) (Figure 5-(a)) and

G(p) (Figure 5-(b)) into CUDA blocks of size B × B.

In Figure 5, those blocks are located inside the colored

contours, and B = 4 only for visualization purpose. In

our application, we use B = 16, as shown in Table 1.

For every block, we load the corresponding contents of

G(p) and D(p) into shared memories. Then, each GPU

thread at pixel (i, j) (strong orange squares in Figure

5) stores the grayscale absolute differences of a pixel

and its 4-connected neighbours into an int4 variable in

AD(p) (Figure 5-(c)).

For each solver iteration, run for each thread associ-

ated with a non-annotated pixel (marked as ’?’ in Fig-

ure 5-(d)), corresponding ω(p) values (5) are accessed

Table 1 List of parameters.

Symbol Description Value
dmax maximum depth intensity 255
β influence of G on D 0.4
B GPU block width 16
tol solver tolerance 10−5

it solver max. num. iterations 1000/2α−p

using the values stored in AD(p) as keys to the precom-

puted weight table W, (i.e., ω(p) = W(AD(p)(i, j))).

Once with the proper ω(p) values estimated and D(p)

loaded into the shared memory, each thread is able

to compute a new depth value that minimizes (3), as

shown in Figure 5-(d). Therefore, a new depth map D(p)

is computed, and threads are synchronized per solver

iteration to load consistent, updated neighbour depth

values. A Jacobi solver accelerated with the Chebyshev

semi-iterative method [40] is used to solve (3), due to

its fast convergence and performance (more details in

Section 5.2). The output of the Algorithm 1 is the depth

image pyramid, as shown in Figure 2-(d).

Our approach supports not only the real-time depth

estimation of D on the GPU, but also the real-time vi-

sualization of depth-based effects computed on the basis

of D (Figure 2-(e)). The generation of those visualiza-

tions also runs on the GPU, and allow the user to see,

at the same time, both the generated depth map and

depth-based effects during the live depth annotation of

I. More details on this topic are given in Section 5.3.

8 Márcio C. F. Macedo, Antônio L. Apolinário Jr.

Table 2 A ranking of the averaged processing time (in sec-
onds) obtained by our approach using distinct GPU sparse
iterative solvers able to solve (3) and generate depth images
with different resolutions.

Image Resolution (s)
Solver 480p 720p 1080p 2160p

ViennaCL BiCGS 0.861 1.734 3.250 10.558
Paralution BiCGS 1.485 1.793 2.566 6.967

CUSP BiCGS 0.446 0.546 0.737 1.755
Gauss-Seidel 0.044 0.054 0.080 0.142

Jacobi+Chebyshev 0.026 0.034 0.050 0.100
Jacobi 0.025 0.032 0.045 0.088

5 Results

In this section, we evaluate the visual quality and the

processing time obtained by our approach in the task of

live user-guided depth map estimation for single images.

5.1 Experimental Setup

To run the experiments of this paper, we used an NVIDIA

GeForce GTX Titan X and an Intel CoreTM i7-3770K

CPU (3.50 GHz) with 8GB RAM. To implement our

technique, we have used OpenCV 2.3.1 [5] for image

processing and CUDA 8.0 [18] for parallel processing.

We compare our approach with the unoptimized,

but accurate nonlocal random walks algorithm [43], which

is open source1, and with our implementation of the

proposal of Liao et al. [22]. To perform that compari-

son, we have sparsely annotated three images available

in the Middlebury dataset [37] using their ground-truth

depths in the scribbles. The list of parameters used to

run all the experiments is shown in Table 1. We refer

the reader to the accompanying video to see the tempo-

ral coherency of our method and to the supplementary

document for additional comparisons between our ap-

proach and related work for distinct datasets.

5.2 Solver Evaluation

There are several solvers available on the literature able

to solve (3) efficiently. In this paper, we have performed

an evaluation of the processing time required by dif-

ferent iterative solvers when estimating D for distinct

image resolutions. Hence, we have chosen to test the

most popular sparse iterative solvers implemented on

the GPU, since all the CPU implementations tested

in our work provided non-interactive performance. We

have tested the following solvers: Jacobi, Jacobi com-

bined with the Chebyshev semi-iterative approach [40]

1 https://github.com/tcyhx/NRW

(Jacobi+Chebyshev), Gauss-Seidel combined with Suc-

cessive Over-Relaxation, implemented on the GPU us-

ing red-black ordering [30], and bi conjugate gradient

stabilized (BiCGS). We tested their implementation in

distinct GPU libraries: CUSP2, Paralution3, and Vien-

naCL [33]. In this case, we considered that a solver has

achieved convergence if either one of the two criteria of

error tolerance tol or maximum number of iterations it

per pyramid level has been achieved. The values used

for both criteria are available in Table 1.

As listed in Table 2, the GPU implementation of

the bi conjugate gradient stabilized solver provided by

CUSP library was the fastest one that we have tested

using an external library, but even that optimized im-

plementation required more than 400 milliseconds to

solve (3), being far from achieving the desired real-time

performance. In this sense, the fastest solver evaluated

in our work was the Jacobi, that could achieve real-time

performance for images up to the full high-definition

resolution (1080p) and interactive performance for 4k

(2160p) images. However, the Jacobi solver is well-known

in the literature due to its reduced convergence speed

[6,34,40]. Hence, we have chosen to use in our work the

second fastest solver listed in Table 2: the Jacobi solver

accelerated with the semi-iterative Chebyshev method

[40]. That acceleration scheme is more than one order of

magnitude faster than most of the other solvers listed

in Table 2, greatly improves the convergence rate of

the Jacobi solver, and produces visually plausible depth

maps able to simulate real-time depth-based effects.

5.3 Visual Quality Evaluation

In Figure 6, we evaluate the accuracy of the depth im-

ages generated by our approach and related work given

the same input images and depth annotations. Inten-

sity differences are evaluated in terms of the root mean

squared error (RMSE).

In the Baby image shown on the left of Figure 6, the

work of Liao et al. (Figure 6-(e)) generates more noisy

artifacts along the edges of the scene than our approach

(Figure 6-(f)). The work of Yuan et al. (Figure 6-(d))

minimizes those artifacts, despite incorrectly assigning

a depth value near the right hand of the Baby doll.

For the Midd scenario shown in the middle of Figure

6, all the approaches recover a depth map that resem-

bles the ground-truth (Figure 6-(c)), but our work and

the work of Liao et al. are slightly more prone to fail

in the measurement of appropriate depth values along

the edges of the objects in the scene (Figures 6-(e, f)),

2 https://cusplibrary.github.io/
3 https://www.paralution.com/

Live User-Guided Depth Map Estimation for Single Images 9

(a
)

O
ri

g
in

a
l

(b
)

A
n

n
o
ta

te
d

(c
)

R
ef

er
en

ce
(d

)
Y

u
a
n
et

a
l.

[4
3
]

RMSE: 0.0345 RMSE: 0.0393 RMSE: 0.0593

(e
)

L
ia

o
et

a
l.

[2
2
]

RMSE: 0.0414 RMSE: 0.0420 RMSE: 0.0743

(f
)

O
u

rs

RMSE: 0.0406 RMSE: 0.0410 RMSE: 0.0709
0

1

Fig. 6 A comparison between the depth maps generated by
related work (d, e) and our approach (f) for the sparsely depth
annotated (b) Baby (left, 620×555 resolution), Midd (middle,
683× 555 resolution) and Cones (right, 450× 375 resolution)
scenes of the Middlebury [37] dataset (a). False color maps
show intensity differences to the reference depth map (c).

(a
)

O
ri

g
in

a
l

(b
)

A
n

n
o
ta

te
d

(c
)

R
ef

er
en

ce
(d

)
Y

u
a
n
et

a
l.

[4
3
]

RMSE: 0.0319 RMSE: 0.0553 RMSE: 0.0369

(e
)

L
ia

o
et

a
l.

[2
2
]

RMSE: 0.0437 RMSE: 0.0592 RMSE: 0.0504

(f
)

O
u

rs

RMSE: 0.0385 RMSE: 0.0575 RMSE: 0.0497
0

1

Fig. 7 A comparison between desaturation (left), haze (mid-
dle) and refocus (right) depth-based effects generated by re-
lated work (d, e) and our approach (f) for the sparsely depth
annotated (b) Baby (left, 620×555 resolution), Midd (middle,
683× 555 resolution) and Cones (right, 450× 375 resolution)
scenes of the Middlebury [37] dataset (a). False color maps
show perceptual differences to the reference image (c).

10 Márcio C. F. Macedo, Antônio L. Apolinário Jr.

mainly due to the color similarity between the white

object and the background wall (Figure 6-(b)).

For the challenging Cones scenario in the right of

Figure 6, our work and the work of Liao et al. (Figures

6-(e, f)) produce noisy depth maps that fail to capture

high-frequency details present in the reference depth

map (Figure 6-(c)), artifacts that are minimized by the

approach of Yuan et al. (Figure 6-(d)).

In this work, our main focus is not only the gener-

ation of high-quality depth maps given a set of sparse

depth annotations, but also, the generation of depth-

based effects on the basis of those estimated depth maps.

As shown in Figure 2, we implemented three differ-

ent depth-based effects on the GPU to demonstrate,

in practice, how depth maps can be used to augment

depth perception in single images.

The haze effect [13], shown at the top of Figure 2-(e)

and in the middle of Figure 7, uses the scene depth to

exponentially attenuate scene radiance in I. The desat-

uration effect, visible in the middle of Figure 2-(e) and

in the left of Figure 7, uses depth as a weight to linearly

interpolate the input image I and the grayscale image

G. The refocus effect, displayed in the bottom of Figure

2-(e) and in the right of Figure 7, consists on the con-

volution of an anisotropic kernel over the input image,

whose kernel order varies in a per-pixel basis, according

to the distance of the center pixel to the camera.

In Figure 7, we applied the depth-based effects over

the original images of Figure 6, to evaluate how much

the depth map quality influences on the quality of the

final rendered image. To assist us in that evaluation,

we have estimated the RMSE of the perceptual differ-

ences (using the FLIP metric [2]) between the reference

images (Figure 7-(c)) and the ones generated by each

depth estimation method. One can see that all of the

methods produce depth-based effects perceptually too

much similar to each other, with the ones produced by

Yuan et al. [43] slightly more accurate than the ones.

That general observation is also held for the distinct

scenes evaluated in the supplementary document.

5.4 Performance Evaluation

We have evaluated the processing times obtained by our

approach and related work when estimating the depth

maps for three scenes of the Middlebury dataset, shown

in Figure 6. The work of Yuan et al. provides perfor-

mance far from real time for the user-guided depth map

estimation, requiring more than 5 seconds to generate

the depth maps. The work of Liao et al. is faster than

the work of Yuan et al., but still demanded more than

500 milliseconds to compute the depth maps. Our

work is faster than related work since, when running

solely on the CPU, it required approximately 200 mil-

liseconds to solve the depth estimation problem, and

when implemented on the GPU, it achieved real-time

performance in all the tested scenarios, running in less

than 30 milliseconds to generate the maps of Figure

6.

We analyzed our parallel implementation described

in Section 4 using a GPU profiler, and could measure

that more than 95% of the time spent by our algorithm

is dedicated to run the Jacobi + Chebyshev solver, the

costly step of our algorithm.

5.5 Discussion

The main goal of this work is to propose a new al-

gorithm to generate depth maps, in real time, on the

basis of a single color image. As we show in Figure 2,

the availability of a depth map eases the task of im-

age editing with respect to the generation of distinct

depth-based effects, such as desaturation, haze, and re-

focus. In this sense, while automatic solutions provided

by deep learning, for instance [36,24,11], could also gen-

erate depth maps from single color images, we believe

that a real-time, user-assisted method for depth map

generation gives more control to the user about how

the depth map can be generated (e.g., realistically, ar-

tistically), while enabling a prompt visualization of the

generated depth map and desired depth-based effect,

and while working even if the image to be edited does

not match the characteristics of the datasets on which

learning algorithms have been trained.

As shown in Figure 6-(f), given a sparse depth an-

notation of an input image, our algorithm is able to

recover a smooth depth map that resembles the ground-

truth, mainly in terms of its low-frequency details, but

that deviates from the ground-truth in regions with

high-frequency details (i.e., edges). Even so, the esti-

mated results presented here and in the supplementary

document show that our approach is, in general, nu-

merically (Figure 6-(f)) and perceptually (Figure 7-(f))

more accurate than the work of Liao et al.. In prac-

tice, Figure 7 shows that the depth-based effects pro-

duced by our approach are coherent with the sparse

depth annotations available and are also similar to the

ones produced by related work. In this sense, the main

advantage of our approach is that we are able to pro-

duce depth maps in real time, achieving, for instance,

30 frames per second in average to generate depth maps

for high-resolution (720p) images. We could show that

our work, the only one implemented on the GPU, is

able to generate visually pleasant depth maps and cor-

responding depth-based effects at real-time frame rates,

Live User-Guided Depth Map Estimation for Single Images 11

enabling the user to see a live feedback on the depth

map (and on the depth-based effect, if desired) gen-

erated on the basis of his/her sparse depth scribbles,

enhancing the user control over the depth annotation.

Our proposed approach is useful for real-time ap-

plications that demand plausible depth maps, such as

augmented reality, or for artistic image editing appli-

cations that work on the basis of depth annotations to

improve depth perception in single images, and aim a

more interactive algorithm able to provide a live feed-

back of the depth annotations.

As for the parameters of our algorithm, at the coars-

est level (p = α) we fall back to the weight coefficient as

determined in (4), since the depth map is too coarse to

be used to detect edges, or has a default initialization in

the first iteration of the algorithm. Then, we use γ = 4

at coarser levels of the pyramid (0 < p < α) to favor the

generation of a smooth depth map, and use γ = 0 in the

finest pyramid level (p = 0), to consider high-frequency

details in the last iterations of the depth propagation

algorithm. Moreover, our solver takes advantage of the

coarse-to-fine strategy used to propagate depth for each

pyramid level, to reduce by a half the number of iter-

ations it needed to solve (3) per pyramid level. Hence,

we spend more iterations to solve (3) in the coarsest

pyramid level, and just a few iterations to include the

high-frequency details of the finest pyramid level in the

final depth map, achieving a balance between accuracy

and performance.

Similarly to the majority of the related work in the

field of user-guided depth map estimation, our algo-

rithm produces wrong and incoherent depth maps given

a set of incorrect depth annotations, but this problem

can be solved by the use of an undo operation. More-

over, our algorithm is not robust under the presence of

neighbour objects with similar color intensities, a prob-

lem that is visible in the Midd scenario in the middle of

Figure 6, where the white object and the wall have sim-

ilar color intensities. A more detailed, dense annotation

over the input image may alleviate depth artifacts gen-

erated along edges and favor the representation of high-

frequency details in the output depth map. Also, by

providing a live feedback of the generated depth map,

we enable the user to correct or improve the depth an-

notation as soon as any of those limitations is perceived.

6 Conclusion and Future Work

In this paper, we have presented an algorithm that

allows a user to annotate a single image with sparse

depth scribbles and generate a plausible depth map

in real time, on the basis of a GPU-based edge-aware

propagation of the sparse depth scribbles annotated on

the input image. We have shown that we could gen-

erate visually pleasant depth maps at approximately

30 frames per second even for high-resolution images.

In this sense, our algorithm is suitable for applications

that demand real-time feedback and work with legacy

content in the form of single images.

For future work, one could make use of more effi-

cient solvers to reduce the processing time of our solu-

tion. Moreover, we believe that our work could be inte-

grated with alternative constraints (e.g., relative depth

[22], equality/inequality [25]) to guide the depth map

estimation. Our approach could be tested to propagate

depth in monocular augmented reality applications [14],

where sparse depth points generated by a SLAM algo-

rithm would be used as a basis to generate the depth

map. Also, a user study could be conducted to evaluate

the impact of the live feedback provided by our solu-

tion in terms of the quality, usability and performance

of the depth annotation process.

Acknowledgements We are thankful to Yuan et al. [43]
for gently sharing the source code of their depth map esti-
mation algorithm. This research is financially supported by
the Postdoctoral National Program of Coordenação de Aper-
feiçoamento de Pessoal do Nı́vel Superior (PNPD/CAPES).
The graphics card used in the experimental setup was pro-
vided by NVIDIA through the GPU Education Center. This
is a post-peer-review, pre-copyedit version of an article pub-
lished in Journal of Real-Time Image Processing. The final
authenticated version is available online at this link4

Conflict of interest

The authors declare that they have no conflict of inter-
est.

Code availability

The source code can be found at this link5.

References

1. Aguilera, C.A., Aguilera, C., Navarro, C.A., Sappa, A.D.:
Fast CNN Stereo Depth Estimation through Embedded
GPU Devices. Sensors (Basel) 20(11) (2020)

2. Andersson, P., Nilsson, J., Akenine-Moller, T., Oskars-
son, M., Astrom, K., Fairchild, M.: FLIP: A Difference
Evaluator for Alternating Images. ACM Comput. Graph.
Interact. Tech. 3(2), 15:1–15:23 (2020)

3. Bednarik, J., Fua, P., Salzmann, M.: Learning to Recon-
struct Texture-Less Deformable Surfaces from a Single
View. In: Proceedings of the 3DV, pp. 606–615 (2018)

4 https://doi.org/10.1007/s11554-020-01055-x
5 https://github.com/MarcioCerqueira/RealTimeDepthDiffusion

12 Márcio C. F. Macedo, Antônio L. Apolinário Jr.

4. Bezerra, H., Eisemann, E., DeCarlo, D., Thollot, J.: Dif-
fusion Constraints for Vector Graphics. In: Proceedings
of the NPAR, pp. 35–42. ACM, New York, NY, USA
(2010). DOI 10.1145/1809939.1809944

5. Bradski, G., Kaehler, A.: Learning OpenCV: Computer
Vision in C++ with the OpenCV Library, 2nd edn.
O’Reilly Media, Inc. (2013)

6. Briggs, W.L., Henson, V.E., McCormick, S.F.: A Multi-
grid Tutorial (2nd Ed.). Society for Industrial and Ap-
plied Mathematics, Philadelphia, PA, USA (2000)

7. Canny, J.: A Computational Approach to Edge Detec-
tion. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–
698 (1986). DOI 10.1109/TPAMI.1986.4767851

8. Cruz, L., Lucio, D., Velho, L.: Kinect and RGBD Images:
Challenges and Applications. In: Proceedings of the SIB-
GRAPI Tutorials, pp. 36–49 (2012)

9. Engel, J., Koltun, V., Cremers, D.: Direct Sparse Odom-
etry. IEEE Trans. Pattern Anal. Mach. Intell. PP(99),
1–1 (2017). DOI 10.1109/TPAMI.2017.2658577

10. Gerrits, M., De Decker, B., Ancuti, C., Haber, T., An-
cuti, C., Mertens, T., Bekaert, P.: Stroke-based creation
of depth maps. In: Proceedings of the ICME, pp. 1–6
(2011). DOI 10.1109/ICME.2011.6012006

11. Gur, S., Wolf, L.: Single Image Depth Estimation Trained
via Depth from Defocus Cues. In: Proceedings of the
CVPR (2019). DOI 10.1109/CVPR.2019.00787

12. Hamzah, R., Ibrahim, H.: Literature Survey on Stereo
Vision Disparity Map Algorithms. Journal of Sensors
2016, 1–23 (2016). DOI 10.1155/2016/8742920

13. He, K., Sun, J., Tang, X.: Single Image Haze Removal
Using Dark Channel Prior. IEEE Trans. Pattern Anal.
Mach. Intell. 33(12), 2341–2353 (2011)

14. Holynski, A., Kopf, J.: Fast Depth Densification for
Occlusion-aware Augmented Reality. ACM Trans.
Graph. 37(6), 194:1–194:11 (2018)

15. Horn, B.K.P., Brooks, M.J. (eds.): Shape from Shading.
MIT Press, Cambridge, MA, USA (1989)

16. Iizuka, S., Endo, Y., Kanamori, Y., Mitani, J., Fukui, Y.:
Efficient Depth Propagation for Constructing a Layered
Depth Image from a Single Image. Computer Graphics
Forum 33(7), 279–288 (2014)

17. Khan, F., Salahuddin, S., Javidnia, H.: Deep Learning-
Based Monocular Depth Estimation Methods-A State-of-
the-Art Review. Sensors (Basel) 20(8) (2020)

18. Kirk, D.B., Hwu, W.m.W.: Programming Massively Par-
allel Processors, Third Edition: A Hands-on Approach,
3rd edn. Morgan Kaufmann Publishers Inc. (2016)

19. Kolb, A., Barth, E., Koch, R., Larsen, R.: Time-of-Flight
Cameras in Computer Graphics. Computer Graphics Fo-
rum 29(1), 141–159 (2010)

20. LeCun, Y., Bengio, Y., Hinton, G.: Deep Learning. Na-
ture 521(7553), 436–444 (2015)

21. Liao, J., Eisemann, M., Eisemann, E.: Split-Depth Im-
age Generation and Optimization. Computer Graphics
Forum 36(7), 175–182 (2017). DOI 10.1111/cgf.13283

22. Liao, J., Shen, S., Eisemann, E.: Depth annotations: De-
signing depth of a single image for depth-based effects.
Computers & Graphics 71, 180 – 188 (2018)

23. Lin, Y.H., Tsai, M.H., Wu, J.L.: Depth sculpturing for
2d paintings: A progressive depth map completion frame-
work. Journal of Visual Communication and Image Rep-
resentation 25(4), 670 – 678 (2014)

24. Liu, F., Shen, C., Lin, G., Reid, I.: Learning Depth from
Single Monocular Images Using Deep Convolutional Neu-
ral Fields. IEEE Trans. Pattern Anal. Mach. Intell.
38(10), 2024–2039 (2016)

25. Lopez, A., Garces, E., Gutierrez, D.: Depth from a Single
Image Through User Interaction. In: Proceedings of the
CEIG. The Eurographics Association (2014)

26. Luo, X., Huang, J.B., Szeliski, R., Matzen, K., Kopf, J.:
Consistent Video Depth Estimation. ACM Trans. Graph.
39(4) (2020)

27. Niklaus, S., Mai, L., Yang, J., Liu, F.: 3D Ken Burns
Effect from a Single Image. ACM Trans. Graph. (2019)

28. Ogawa, N., Narumi, T., Hirose, M.: Swinging 3D Lamps:
A Projection Technique to Convert a Static 2D Picture
to 3D Using Wiggle Stereoscopy. In: Proceedings of the
ACM SIGGRAPH Posters, pp. 29:1–29:2 (2017)

29. Orzan, A., Bousseau, A., Winnemöller, H., Barla, P.,
Thollot, J., Salesin, D.: Diffusion Curves: A Vector Rep-
resentation for Smooth-shaded Images. ACM Trans.
Graph. 27(3), 92:1–92:8 (2008)

30. Pall, P., Nylén, O., Fratarcangeli, M.: Fast Quadrangu-
lar Mass-spring Systems Using Red-black Ordering. In:
Proceedings of the VRIPHYS, pp. 37–43 (2018)

31. Pentland, A.P.: A New Sense for Depth of Field. IEEE
Trans. Pattern Anal. Mach. Intell. 9(4), 523–531 (1987)

32. Phan, R., Androutsos, D.: Robust Semi-Automatic
Depth Map Generation in Unconstrained Images and
Video Sequences for 2D to Stereoscopic 3D Conversion.
IEEE Transactions on Multimedia 16(1), 122–136 (2014)

33. Rupp, K., Tillet, P., Rudolf, F., Weinbub, J., Grasser, T.,
Jngel, A.: ViennaCL-Linear Algebra Library for Multi-
and Many-Core Architectures. SIAM Journal on Scien-
tific Computing (2016-10-27). DOI 10.1137/15m1026419

34. Saad, Y.: Iterative Methods for Sparse Linear Systems,
2nd edn. Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA (2003)

35. Saputra, M.R.U., Markham, A., Trigoni, N.: Visual
SLAM and Structure from Motion in Dynamic Environ-
ments: A Survey. ACM Comput. Surv. 51(2), 37:1–37:36
(2018). DOI 10.1145/3177853

36. Saxena, A., Sun, M., Ng, A.Y.: Make3D: Learning 3D
Scene Structure from a Single Still Image. IEEE Trans.
Pattern Anal. Mach. Intell. 31(5), 824–840 (2009)

37. Scharstein, D., Szeliski, R., Zabih, R.: A taxonomy and
evaluation of dense two-frame stereo correspondence al-
gorithms. In: Proceedings of the SMBV, pp. 131–140
(2001). DOI 10.1109/SMBV.2001.988771

38. Song, J., Wang, J., Zhao, L., Huang, S., Dissanayake, G.:
MIS-SLAM: Real-Time Large-Scale Dense Deformable
SLAM System in Minimal Invasive Surgery Based on
Heterogeneous Computing. IEEE Robot. Autom. Lett.
3(4), 4068–4075 (2018). DOI 10.1109/LRA.2018.2856519

39. Valentin, J., Kowdle, A., Barron, J.T., Wadhwa, N.,
Dzitsiuk, M., Schoenberg, M., Verma, V., Csaszar, A.,
Turner, E., Dryanovski, I., Afonso, J., Pascoal, J., Tsot-
sos, K., Leung, M., Schmidt, M., Guleryuz, O., Khamis,
S., Tankovitch, V., Fanello, S., Izadi, S., Rhemann, C.:
Depth from Motion for Smartphone AR. ACM Trans.
Graph. 37(6), 193:1–193:19 (2018)

40. Wang, H.: A Chebyshev Semi-iterative Approach for
Accelerating Projective and Position-based Dynamics.
ACM Trans. Graph. 34(6), 246:1–246:9 (2015)

41. Wang, O., Lang, M., Frei, M., Hornung, A., Smolic, A.,
Gross, M.: StereoBrush: Interactive 2D to 3D Conver-
sion Using Discontinuous Warps. In: Proceedings of the
SBIM, pp. 47–54 (2011)

42. Wang, T., Liu, M., Zhu, J., Tao, A., Kautz, J., Catan-
zaro, B.: High-Resolution Image Synthesis and Semantic
Manipulation with Conditional GANs. In: Proceedings
of the CVPR, pp. 8798–8807 (2018)

Live User-Guided Depth Map Estimation for Single Images 13

43. Yuan, H., Wu, S., Cheng, P., An, P., Bao, S.: Nonlocal
Random Walks Algorithm for Semi-Automatic 2D-to-3D
Image Conversion. IEEE Signal Process. Lett. 22(3),
371–374 (2015). DOI 10.1109/LSP.2014.2359643

44. Zhang, R., Zhu, J.Y., Isola, P., Geng, X., Lin, A.S., Yu,
T., Efros, A.A.: Real-time User-guided Image Coloriza-
tion with Learned Deep Priors. ACM Trans. Graph.
36(4), 119:1–119:11 (2017)

